• / 41

[高中教育]初高中衔接数学学习必备的知识与技能【共七讲含配套练习与答案】.doc

资源描述:
《[高中教育]初高中衔接数学学习必备的知识与技能【共七讲含配套练习与答案】.doc》由本站会员分享,支持在线阅读,更多《[高中教育]初高中衔接数学学习必备的知识与技能【共七讲含配套练习与答案】网友投稿.doc》相关的内容可在三九文库网上搜索。

初高中衔接必备的数学知识与技能七讲(含配套练习及答案)目录第一讲数与式的运算1第一讲习题答案6第二讲因式分解7第二讲因式分解答案12第三讲一元二次方程根与系数的关系13第三讲一元二次方程根与系数的关系习题答案19第四讲不等式19第四讲不等式答案25第五讲二次函数的最值问题26第五讲二次函数的最值问题答案28第六讲简单的二元二次方程组29第六讲简单的二元二次方程组答案33第七讲分式方程和无理方程的解法34第七讲分式方程和无理方程的解法答案39本站资源汇总[优秀资源。

值得收藏]4039超越自我争创辉煌第一讲数与式的运算在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形。

但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要补充“繁分式”等有关内容.一、乘法公式【公式1】证明:等式成立【例1】计算:解:原式=说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.【公式2】(立方和公式)证明:说明:请同学用文字语言表述公式2.【例2】计算:解:原式=我们得到:【公式3】(立方差公式)请同学观察立方和、立方差公式的区别与联系,公式1、2、3均称为乘法公式.【例3】计算:(1)(2)(3)(4)解:(1)原式=(2)原式=(3)原式=(4)原式=说明:(1)在进行代数式的乘法、除法运算时。

要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知,求的值.解:原式=说明:本题若先从方程中解出的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知,求的值.解:原式=①②,把②代入①得原式=说明:注意字母的整体代换技巧的应用.引申:同学可以探求并证明:二、根式式子叫做二次根式。

其性质如下:(1)(2)(3)(4)【例6】化简下列各式:(1)(2)解:(1)原式=(2)原式=说明:请注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)(3)解:(1)原式=(2)原式=(3)原式=说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来。

②分母中有根式(如)或被开方数有分母(如).这时可将其化为形式(如可化为),转化为“分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如化为,其中与叫做互为有理化因式).【例8】计算:(1)(2)解:(1)原式=(2)原式=说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.【例9】设,求的值.解:原式=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.三、分式当分式的分子、分母中至少有一个是分式时。

就叫做繁分式,繁分式的化简常用以下两种方法:(1)利用除法法则;(2)利用分式的基本性质.【例10】化简解法一:原式=解法一:原式=说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质进行化简.一般根据题目特点综合使用两种方法.【例11】化简解:原式=说明:(1)分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2)分式的计算结果应是最简分式或整式.练习A组1.二次根式成立的条件是()A.B.C.D.是任意实数2.若。

则的值是()A.-3B.3C.-9D.93.计算:(1)(2)(3)(4)4.化简(下列的取值范围均使根式有意义):(1)(2)(3)(4)5.化简:(1)(2)B组1.若,则的值为():A.B.C.D.2.计算:(1)(2)3.设,求代数式的值.4.当,求的值.5.设、为实数,且,求的值.6.已知,求代数式的值.7.设,求的值.8.展开9.计算10.计算11.化简或计算:(1)(2)(3)(4)第一讲习题答案A组1.C2.A3.(1)(2)(3)(4)4.5.B组1.D2.3.4.5.6.37.8.9.10.11.第二讲因式分解因式分解是代数式的一种重要的恒等变形。

它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一、公式法(立方和、立方差公式)在第一讲里,我们已经学习了乘法公式中的立方和、立方差公式:(立方和公式)(立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到:这就是说,两个数的立方和(差),等于这两个数的和(差)乘以它们的平方和与它们积的差(和).运用这两个公式,

可以把形式是立方和或立方差的多项式进行因式分解.【例1】用立方和或立方差公式分解下列各多项式:(1)(2)分析:(1)中,,(2)中.解:(1)(2)说明:(1)在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如,这里逆用了法则;(2)在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号.【例2】分解因式:(1)(2)分析:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现,可看着是或.解:(1).(2)二、分组分解法从前面可以看出,能够直接运用公式法分解的多项式。

主要是二项式和三项式.而对于四项以上的多项式,如既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式【例3】把分解因式.分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按的降幂排列,然后从两组分别提出公因式与,这时另一个因式正好都是,这样可以继续提取公因式.解:说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试.【例4】把分解因式.分析:按照原先分组方式。

无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把分解因式.分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是;把第三、四项作为另一组,在提出公因式后,另一个因式也是.解:【例6】把分解因式.分析:先将系数2提出后,得到,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:说明:从例5、例6可以看出:如果一个多项式的项分组后。

各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三、十字相乘法1.型的因式分解这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.因此,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.【例7】把下列各式因式分解:(1)(2)解:(1).(2)说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.【例8】把下列各式因式分解:(1)(2)解:(1)(2)说明:此例可以看出。

常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同.【例9】把下列各式因式分解:(1)(2)分析:(1)把看成的二次三项式,这时常数项是,一次项系数是,把分解成与的积,而,正好是一次项系数.(2)由换元思想,只要把整体看作一个字母,可不必写出,只当作分解二次三项式.解:(1)(2)2.一般二次三项式型的因式分解大家知道,.反过来,就得到:我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行.这种借助画十字交叉线分解系数。

从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.【例10】把下列各式因式分解:(1)(2)解:(1)(2)说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.四、其它因式分解的方法1.配方法【例11】分解因式解:说明:这种设法配成有完全平方式的方法叫做配方法。

展开阅读全文
 温馨提示:
下载提示
关于本文
本文标题:[高中教育]初高中衔接数学学习必备的知识与技能【共七讲含配套练习与答案】.doc
链接地址:https://www.999doc.com/661615.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 联系我们

copyright © 2016-2021  999doc三九文库网 版权所有

经营许可证编号:苏ICP备2020069977号  网站客服QQ:772773258  联系电话:0518-83073133