• / 8

鲁教版初中数学八年级下册《用因式分解法解一元二次方程》教学设计.docx

资源描述:
《鲁教版初中数学八年级下册《用因式分解法解一元二次方程》教学设计.docx》由本站会员分享,支持在线阅读,更多《鲁教版初中数学八年级下册《用因式分解法解一元二次方程》教学设计网友投稿.docx》相关的内容可在三九文库网上搜索。

精品文档用心整理第八章一元二次方程4.用因式分解法解一元二次方程一、学生知识状况分析学生的知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了解一元一次方程的方法,熟练掌握了解一元一次方程的步骤;在八年级上册学生学习了因式分解,掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。学生活动经验基础:在相关知识的学习过程中。

学生已经经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,切实提高了应用意识和能力,也感受到了解一元二次方程的必要性和作用;同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析教科书基于用因式分解法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:能根据已有的分解因式知识解决形如“x(x-a)=0”和“x2-a2=0”的特殊一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。

数学教学由一系列相互联系而又渐次递进的课堂组成,因而具体的课堂教学也应满足于远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《因式分解法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“经历由具体问题抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。”同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:知识与技能目标1、能根据具体一元二次方程的特征。

灵活选择方程的解法,体会解决问题资料来源于网络仅供免费交流使用精品文档用心整理方法的多样性;2、会用因式分解法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程;3、通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。过程与方法目标1、通过学生探究一元二次方程的解法,使学生知道分解因式法是解一元二次方程的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方法。

并初步学会不同方法之间的差异,学会在与他人的交流中获益。情感与态度目标1、经历观察,归纳分解因式法解一元二次方程的过程,激发好奇心;2、进一步丰富数学学习的成功体验,使学生在学习中培养良好的情感、态度和主动参与、合作交流的意识,进一步提高观察、分析、概括等能力。三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。第一环节:复习回顾内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。

2、用公式法解一元二次方程应先将方程化为一般形式。3、选择合适的方法解下列方程:①x26x=7②3x2+8x3=0目的:以问题串的形式引导学生思考,回忆两种解一元二次方程的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫。资料来源于网络仅供免费交流使用精品文档用心整理实际效果:第一问题学生先动笔写在练习本上,有个别同学少了条件“n≥0”。第二问题由于较简单,学生很快回答出来。第三问题由学生独立完成,通过练习学生复习了配方法及公式法,并能灵活应用,提高了学生自信心。

第二环节:情景引入、探究新知内容:1、师:有一道题难住了我,想请同学们帮助一下,行不行?生:齐答行。师:出示问题,一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?说明:学生独自完成,教师巡视指导,选择不同答案准备展示。附:学生A:设这个数为x,根据题意,可列方程x2=3x∴x23x=0∵a=1,b=3,c=0∴b24ac=9∴x=0,x=312∴这个数是0或3。学生B::设这个数为x,根据题意,可列方程x2=3x∴x23x=0x23x+(3/2)2=(3/2)2(x3/2)2=9/4∴x3/2=3/2或x3/2=3/2∴x=3。

x=012∴这个数是0或3。学生C::设这个数为x,根据题意,可列方程x2=3x∴x23x=0即x(x3)=0资料来源于网络仅供免费交流使用精品文档用心整理∴x=0或x3=0∴x=0,x=312∴这个数是0或3。学生D:设这个数为x,根据题意,可列方程x2=3x两边同时约去x,得∴x=3∴这个数是3。2、师:同学们在下面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么?说明:小组内交流。

中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。超越小组:我们认为D小组的做法不正确,因为要两边同时约去X,必须确保X不等于0,但题目中没有说明。虽然我们组没有人用C同学的做法,但我们一致认为C同学的做法最好,这样做简单又准确.学生E:补充一点,刚才讲X须确保不等于0,而此题恰好X=0,所以不能约去,否则丢根.师:这两位同学的回答条理清楚并且叙述严密,相信下面同学的回答会一个比一个棒!(及时评价鼓励,激发学生的学习热情)3、师:现在请C同学为大家说说他的想法好不好?生:齐答好学生C:X(X3)=0所以X=0或X=3因为我想30=0。

0(3)=0,0120=0反过来,如果ab=0,那么a=0或b=0,所以a与b至少有一个等于04、师:好,这时我们可这样表示:如果ab=0,那么a=0或b=0这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”。所以由x(x3)=0得到x=0和x3=0时,中间应写上“或”字。我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用ab=0,则a=0或b=0,把一元二次方程变成一元一次方程,从而求出方程的解。我们把这种解一元二次方程的方法称为资料来源于网络仅供免费交流使用精品文档用心整理因式分解法。

即当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我门就采用因式分解法来解一元二次方程。目的:通过独立思考,小组协作交流,力求使学生根据方程的具体特征,灵活选取适当的解法.在操作活动过程中,培养学生积极的情感,态度,提高学生自主学习和思考的能力,让学生尽可能自己探索新知,教师要关注每一位学生的发展.问题3和4进一步点明了因式分解的理论根据及实质,教师总结了本节课的重点.实际效果:对于问题1学生能根据自己的理解选择一定的方法解决,速度比较快。第2问让学生合作解决,学生在交流中产生了不同的看法,经过讨论探究进一步了解了分解因式法解一元二次方程是一种更特殊、简单的方法。

C同学对于第3问的回答从特殊到一般讲解透彻,学生语言学生更容易理解。问题4的解决很自然地探究了新知——因式分解法.并且也点明了运用因式分解法解一元二次方程的关键:将方程左边化为因式乘积,右边化为0,这为后面的解题做了铺垫。说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。第三环节例题解析内容:解下列方程(1)、5X2=4X(仿照引例学生自行解决)(2)、X2=X(X2)(师生共同解决)(3)、(X+1)225=0(师生共同解决)学生G:解方程(1)时。

先把它化为一般形式,然后再因式分解求解。解:(1)原方程可变形为5X24X=0∴X(5X4)=0∴X=0或5X4=0∴X=0,X=4/512学生H:解方程(2)时因为方程的左、右两边都有(x2),所以我把(x2)看作整体,然后移项,再因式分解求解。资料来源于网络仅供免费交流使用精品文档用心整理解:(2)原方程可变形为(X2)X(X2)=0∴(X2)(1X)=0∴X2=0或1X=0∴X=2,X=112学生K:老师,解方程(2)时能否将原方程展开后再求解师:能呀。

只不过这样的话会复杂一些,不如把(x2)当作整体简便。学生M:方程(x+1)225=0的右边是0,左边(x+1)225可以把(x+1)看做整体,这样左边就是一个平方差,利用平方差公式即可因式分解。解:(3)原方程可变形为[(X+1)+5][(X+1)5]=0∴(X+6)(X4)=0∴X+6=0或X4=0∴X=6,X=412师:好﹗这个题实际上我们在前几节课时解过,当时我们用的是开平方法,现在用的是因式分解法。由此可知:一个一元二次方程的解法可能有多种,我们在选用时,以简便为主。问题:1、用这种方法解一元二次方程的思路是什么?步骤是什么?(小组合作交流)2、对于以上三道题你是否还有其他方法来解?(课下交流完成)目的:例题讲解中。

第一题学生独自完成,考察了学生对引例的掌握情况,便于及时反馈。第2、3题体现了师生互动共同合作,进一步规范解题步骤,最后提出两个问题。问题1进一步巩固因式分解法定义及解题步骤,而问题2体现了解题的多样化。实际效果:对于例题中(1)学生做得很迅速,正确率比较高;(2)、(3)题经过探究合作最终顺利的完成,所以学生情绪高涨,讨论热烈,思维活跃,正是因为这,问题1、2学生们有见地的结论不断涌现,叙述越来越严谨。说明:在课本的基础上例题又补充了一题,目的是练习使用公式法因式分解。第四环节:巩固练习资料来源于网络仅供免费交流使用精品文档用心整理内容:1、解下列方程:(1)(X+2)(X4)=0(2)X24=0(3)4X(2X+1)=3(2X+1)2、一个数平方的两倍等于这个数的7倍。

展开阅读全文
 温馨提示:
下载提示
关于本文
本文标题:鲁教版初中数学八年级下册《用因式分解法解一元二次方程》教学设计.docx
链接地址:https://www.999doc.com/571243.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 联系我们

copyright © 2016-2021  999doc三九文库网 版权所有

经营许可证编号:苏ICP备2020069977号  网站客服QQ:772773258  联系电话:0518-83073133