• / 14

数字频率计制作.doc

资源描述:
《数字频率计制作.doc》由本站会员分享,支持在线阅读,更多《数字频率计制作最新版.doc》相关的内容可在三九文库网上搜索。

电机转速检测仪(数字频率计)的设计制作指导老师:学生:一.设计任务和要求各种电机在工业得到广泛应用,为了能方便的对电机进行控制、监视、调速,有必要对电机的转速进行测量,从而提高自动化程度。同时电路能扩展其应用功能,具有测量频率的功能,因此对电路提出以下基本要求:1.对电机转速进行测量,并数字显示,采样单位为每秒几转。2.电机转速一般每秒不超过100转,采用2位十进制已经足够(既2个数码管),但是考虑到此电路有其他用途,所以仍采用四位数码管,最大可以计数4位十进制,同时可以升级为频率计使用。3.转速测量误差每秒不超过一圈,内部时钟稳定度每天不超一秒。4.电路原理要求简单。

便于制作调试,元件成本低廉易购。二.总体方案设计1.设计思路(1)利用光电开关管做电机转速的信号拾取元件,在电机的转轴上安装一圆盘,在圆盘上挖一小洞,小洞上下分别对应着光发射和光接受开关,圆盘转动一圈既光电管导通一次,利用此信号做为脉冲计数所需。(2)计数脉冲通过计数电路进行有效的计数,按照设计要求每一秒种都必须对计数器清零一次,因为电路实行秒更新,所以计数器到译码电路之间有锁存电路,在计数器进行计数的过程中对上一次的数据进行锁存显示,这样做不仅解决了数码显示的逻辑混乱,而且避免了数码显示的闪烁问题。(3)对于脉冲记数,有测周和测频的方式。测周电路的测量精度主要受电路系统的脉冲产生电路的影响。

对于低频率信号,其精度较高。测频电路其对于正负一的信号差比较敏感,对于低频率信号的测量误差较大,但是本电路仍然采用测频方式,原因是本电路对于马达电机转速精度要求较低,本电路还有升级为频率计使用,而测频方式对高频的精度还是很高的。(4)显示电路采用静态显示方法,由于静态显示易于制作和调试,原理也较简单,所需元易于购买。(5)电路时钟是整个电路的关键,他是整个电路有效工作的核心,负责电路的锁存和清零。其基本思路是:产生频率一秒是时钟,当秒时钟到来时,既上升沿到来时,对锁存电路进行锁存,锁存以后才能对计数器进行清零,锁存和清零间隔要充分小,否则就影响电路的计数准确度。鉴于此,对锁存集成必须采用边沿触发形式的集成。

并且计数器应该与锁存同步工作,既都在秒时钟的上升沿触发工作。另外大多的译码器都带有锁存功能,但是他的锁存方式基本上都是电平触发,若设计成电平触发的话,势必会增加电路的复杂度,还不如直接采用边沿琐存的单集成,所以不使用译码器中的锁存电路。时钟实现方法很多,本电路采用晶振电路,已求得高精度的时钟需求。2.原理框图如图下。译码器锁存器计数器整形电路单稳态时钟电路显示电路图1三.设计,原理分析1.信号拾取与整形信号拾取基本原理图如下:电路核心由一个光电开关管组成,平时

发光二极管所发出的光被轮子挡住,所以接收管处于截止状态,1端为高电平。当电机转动一圈,会使接收管导通一次,1端输出一个低电平,1端波形为:在实际电机工作状态中,会受到各方面的干扰,波形会存在许多杂波成分,需要对波形进行处理,处理成符合记计数器所需要的矩型波。波形处理电路有一个施密特触发器组成,如上图。当输入电压逐步升高时,致使VI>施密特上VT+,内部触发器发生翻转。当VI逐步下降时,致使VIVT。所以只要VIVT+电路就稳定在高电平,这样就有效的防止了杂波的干扰,并使输出得到矩形脉冲。

符合了下级计数的需求。典型的施密特其工作波形如下:本施密特触发器选用40106,管脚如下,可以看出内部含有六路同样的施密特触发器,我们只使用其中一组,2.计数电路本电路采用四个同步计数器接成串行工作方式,查数字电路产品资料后,准备采用CD4518,管脚如下图,该IC是一种同步加数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别是输入输出波形⑴~⑺和⑼~⒂。该计数器是单路系列脉冲输入(1或2脚;9或10脚),4路BCD码输出(3~6脚;11~14脚)。其工作波形如下:CD4518管脚从4518应用手册给出的真值表看出,CD4518有两个时钟输入端CP和EN(ENABLEA或B)。

若用时钟上升沿触发,信号从CP端输入,此时EN端接高电平“1”,若用时钟下降沿触发,信号从EN端输入,此时CP端应接低电平“0”,不仅如此,清零端(RESET)也应该保持低电平“0”,只有满足了这些条件,电路才会处于计数状态。CD4518真值表我们还从真值表里可以得出,利用EN端下降沿触发的特点组成N位十进制计数器。从波形分析,当输入端的计数脉冲到第10个时,电路自动复位0000状态,因为4518没有进位功能的引脚,所以应该充分利用第6或14脚输出脉冲的下降沿,利用该脉冲和EN端相连,就可以实现电路进位的功能,根据分析结果,电路设计如下:计数脉冲另外从4518波形参数表可查其RESET端所需的清零电平宽度在VDD=5V时应该大于250ns。

既清零信号宽度应至少大于250ns才能有效的将计数器清零,从测量的准确度要求来看,250ns周期的频率f=1/λ=1/250=4M,远远大于我们所测量的频率最高值10KH,所以我们至少可以将其运用与小于M级别频率的测量。现在可以得出结果清零信号宽度应大于250ns,以此做为时钟设计电路的参考数据。3.锁存电路锁存集成有电平和边沿触发之分,设计时要充分考虑进去,内部构造大都采用D触发器形式,使用电平或者脉冲方式来触发。而从前面的分析看,本次设计的锁存电路必须采用边沿触发方式的集成电路来实现,因为假如采用电平方式的话,那么在秒脉冲的正半周(既高电平)会使锁存器一直处于导通状态。

不能正常显示测量值。因此采用边沿触发就可以在极短的时间内将所需要的数据进行传送,而在其它时间内处于封闭状态。查阅数据集成资料并,发现8D锁存器74LS324正适合要求,这款集成多在计算机电路中运用,而且容易购买,此集成为20脚封装,内部有8个D锁存器,采用两个这样的集成便可以实现4位10进制的的数据传输,它以上升沿作为CP端(即CLK)的有效触发,将8个D输入同时打到输出Q端,在输出端加有三态驱动,其内部其管脚排列如下右图,内部构造(单个D触发器)如下右图从此集成参数和真值表(如下),在其(1)脚使能端加上低电平才能有效得使输出端得到所需的数据,其他状态不传送数据,也可从上图分析此(1)脚是控制三态门的。

相当于电路的通断开关,只有接低电平,电路才能正常工作。左图可知在满足了OE端低电平的条件下,只有在CP端的上沿到来时间才能使Q端有效翻转,达到我们预期设计所需要的边沿触发的要求。但从时钟的角度出发,对374的边沿特性仍然有要求,因为电路要求对锁存器进行锁存以后才能将计数器清零,否则在锁存未稳定前就将计数器清零势必造成显示的错误。我们从374应用手册中给出的数据中可知,在cp端的上升沿到来时,从Q端输出延时有15~28ns,数据和波形分别如下:时隙极限(ns)测试环境minmaxTplhTphl15192828CL=45pfRL=667Ω因此从CP端的上沿到达时既超过1。

3V电压时,可以使Q端翻转,而且能够在至少在28ns以内完成触发器翻转的任务,只要在此时间内计数器不清零就可以使电路正常工作,时钟设计时就可以此为依据。4.译码显示电路市场上比较多见数码显示器件是LED数码管,它有亮度高、售价低等特点,非常适合本电路制作。数码管的外形尺寸和内部构造如图所示,电源负端abcdefgdp主要参数如下:1.6V~4.2V;功耗≤400mW,工作电流≤10mA;分共阳共阴两种极性,本电路选用共阴。其引脚按顶视图的(1)脚开始,顺时针读数,(3)脚和(8)脚为公共脚,其中(5)脚为小数点,本电路不做连接。引脚分别如下:GFABEDCdp10987612345数码管与配套的驱动集成器件一起工作。

通常称为BCD-7段译码器。查阅译码集成,发现有很多都能与LED管很好的协调工作,最后确定为CD4543,它是一种中功率器件,在额定5V电压下输出4.5V的最大电压,输出电流达1mA左右,本电路总共需要4块CD4543。管脚排列如下:集成从(2)~(5)脚依次输入二进制BCD码的高位到低位,(9)脚~15脚输出点燃数码管所需要的二进制电压,(1)端为琐存控制,(7)端位消隐端,(6)端为L6CD用。同时,从原先的设计思路出发,(1)脚锁存端不使用,再结合其真值表,(1)脚需接高电平,而(6)、(7)均需接底电平,满足此要求才能正常工作。译玛器和数码管工作的方式一般有动态扫描和静态驱动两种。

前着电路工作原理较为复杂,数码管处于连续依次被点燃状态,利用人眼视觉惰性产生数字显示静态的效果,通常只用两块集成就可以完成译码和显示的工作。而静态工作状态中,数码管持续点燃,在特定时间的更新显示,所以显示无视觉闪烁,而且电路调试简单,本电路考虑到前级74LS324已经锁定数据,因此配合静态工作能很好完成显示的工作,所以本电路选用静态连接。根据管脚分布和译码参数及管脚分布,电路设计如下:5.时钟电路及波形设计根据以上各电路功能模块的需求,时钟电路总共需要产生两路输出信号,一路是频率为1秒的标准矩形脉冲,利用其上沿对锁存器进行锁存,另一路是计数器的清零脉冲,要求脉冲宽度≥250ns才可以有效得将计数器清零。

频率仍然是1秒。而且在锁存以后才可以对计数器进行清零,考虑到锁存在25ns之内完成工作,所以只要电路调试得当,无须再加延时电路,而且从上面设计的方框图可知,矩形脉冲经过一个单稳态电路以后才产生清零脉冲,单稳态集成也存在不可人为的延时存在,所以电路可以正常工作。各部分设计如下:1)时钟产生电路时钟产生方式很多,可以由各种门电路,环谐振电路,也可以由触发器、555集成构成,左图便是CD4060的应用接线图,(11)和(10)脚内部电路和外围组成典型的石英晶体门振荡电路,产生32.678KHZ的频率信号进入14级计数器后,在3脚输出2HZ的频率方波。C1和C2做频率微调。

输出频率主要取决于石英晶体。,谐振可以是电容,晶体。为了电路调试方便,综合条件,采用CMOS集成加晶振,晶振采用平常较为多见的时钟晶振,谐振频率为32.786k。查阅数据集成资料,发现CD4046符合各方面的要求,它内部含有14级的二进制串行计数器,可以进行214分频,32.768k谐振频率经过内部14级计数器214=16372分频后可以得到2HZ的精确频率。现在所需要的1秒的时钟,因此2HZ的脉冲需在经过一个二分频电路就可以输出准确1秒脉冲。对于2HZ的方波仍然无法让电路正常工作,需要进行2分频才能产生1秒的时钟,因此本电路设计一个JK触发器进行2分频。

展开阅读全文
 温馨提示:
下载提示
关于本文
本文标题:数字频率计制作.doc
链接地址:https://www.999doc.com/441292.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright © 2016-2021  999doc三九文库网 版权所有

经营许可证编号:苏ICP备2020069977号  网站客服QQ:772773258  联系电话:0518-83073133